我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

云南8个地区食蚊鱼种群的遗传结构分析(PDF)

《西南林业大学学报》[ISSN:2095-1914/CN:53-1218/S]

期数:
2017年04期
页码:
113-119
栏目:
出版日期:
2017-06-30

文章信息/Info

Title:
Genetic Structure of Gambusia affinis in 8 Regions of Yunnan
文章编号:
2095-1914(2017)04-0113-07
作者:
秦凯波1仇玉萍1郑毅12
1. 西南林业大学国家高原湿地研究中心,云南 昆明 650224;
2. 云南省教育厅,云南 昆明 650223
Author(s):
Qin Kaibo1 Qiu Yuping1 Zheng Yi12
1. National Plateau Wetlands Research Center, Southwest Forestry University, Kunming Yunnan 650224, China;
2. Education Department of Yunnan Province, Kunming Yunnan 650223, China
关键词:
食蚊鱼线粒体DNA单倍型基因种群遗传变异
Keywords:
Gambusia affinis mitochondrial DNA haplotype gene population genetic variation
分类号:
Q959.1
DOI:
10.11929/j.issn.2095-1914.2017.04.017
文献标识码:
A
摘要:
利用线粒体细胞色素b基因序列对云南8个不同地理种群食蚊鱼的遗传结构进行了分析,并对8个地理种群共计210个样本进行PCR扩增;采用分子方差分析方法,对种群的遗传变异进行分析。结果表明:获得了786 bp的基因片段序列,共检测到5个多态位点,定义了5种单倍型,其中单倍型H1由7个地理种群的156个样本共享 (占样本总量74.3%),单倍型H2由7个地理种群的52个样本共享 (占样本总量24.8%)。碱基频率含量 (A+T) 为53.2%,大于 (G+C) 46.8%。核苷酸多态性以东大河种群最高,其他7个群体较低。种群间的基因流较小为0.28。种群间遗传变异占总变异的52.74%,种群内的遗传变异占总变异的47.26%,种群间的变异是总变异的主要来源,云南地区的食蚊鱼种群整体较为稳定。
Abstract:
In this study, the genetic structure of Gambusia affinis which come from 8 different geographical populations in Yunnan was analyzed using mitochondrial cytochrome b technology. 786 bp sequences were obtained from 210 individuals of G.affinis, collected from 8 geographic populations in Yunnan Province. Of the 786bp sequences, 5 polymorphic sites defined 5 haplotypes. Among the haplotypes, the haplotype H1 was shared by 156 samples from 7 geographic populations (74.3% of the total length), and the haplotype H2 was shared by 52 samples which come from 7 geographic populations (24.8% of the total length). The base frequency content of G.affinis (A+T) was 53.2%, which was greater than (G+C) 46.8%. The nucleotide polymorphisms were the highest in the Dongdahe River population and the remaining 7 populations were lower. The gene flow between populations was 0.28. The results of molecular variance analysis (AMOVA) showed that 52.74% variation derived from different populations, 47.26% of the variation existed within the same population. The variation among the populations was the main source of total variation. The neutral analysis of the population of G.affinis showed that the population of G.affinis in Yunnan was relatively stable.

参考文献/References

[1]潘勇, 曹文宣, 徐立蒲, 等. 鱼类入侵的过程、机制及研究方法[J]. 应用生态学报, 2007, 18(3): 687-692.
[2]Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges[J]. Biological Reviews, 2006, 81(2): 163-182.
[3]Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States[J]. Ecological Economics, 2005, 52(3): 273-288.
[4]郦珊, 陈家宽, 王小明. 淡水鱼类入侵种的分布、入侵途径、机制与后果[J]. 生物多样性, 2016, 24(6): 672-685.
[5]Caiola N, Sostoa A D. Possible reasons for the decline of two native toothcarps in the Iberian Peninsula: evidence of competition with the introduced Eastern mosquitofish[J]. Journal of Applied Ichthyology, 2005, 21(4): 358-363.
[6]Lloyd L N, Tomasov J F.Taxonomic status of the mosquitofish, Gambusia affinis (Poeciliidae), in Australia[J]. Marine & Freshwater Research, 1985, 36(3): 447-451.
[7]Haynes J L, Cashner R C. Life history and population dynamics of the western mosquitofish; a comparison of natural and introduced species[J]. Journal of Fish Biology, 2005, 46(6): 1026-1041.
[8]Lawler S P, Dritz D, Strange T, et al. Effects of introduced mosquitofish and bullfrogs on the threatened California redlegged frog[J]. Conservation Biology, 1999, 13(3): 613-622.
[9]李振宇, 解炎. 中国外来入侵种[M]. 北京: 林业出版社, 2002: 88.
[10]严云志, 陈毅峰, 陶捐. 食蚊鱼生态入侵的研究进展[J]. 生态学杂志, 2009, 28(5): 950-958.
[11]陈国柱, 林小涛, 陈佩. 食蚊鱼 (Gambusia spp.) 入侵生态学研究进展[J]. 生态学报, 2008, 28(9): 4476-4485.
[12]Feder J L, Smith M H, Chesser R K, et al. Biochemical genetics of mosquitofish. II. demographic differentiation of populations in a thermally altered reservoir[J]. Copeia, 1984, 1984(1): 108-119.
[13]Scribner K T, Wooten M C, Smith M H, et al. Variation in life history and genetic traits of Hawaiian mosquitofish populations[J]. Journal of Evolutionary Biology, 1992, 5(2): 267-288.
[14]Wooten M C, Scribner K T, Smith M H. Genetic variability and systematics of Gambusia in the southeastern United States[J]. Copeia, 1988, 1988(2): 283-289.
[15]Guo L, Jun L I, Wang Z S, et al. Phylogenetic relationships of noodle-fishes (Osmeriformes: Salangidae) based on four mitochondrial genes[J]. Acta Hydrobiologica Sinica, 2011, 35(3): 449-459.
[16]Gao Z, Wang W, Zhou X. DNA marker technologies and their applications in aquaculture genetics[J]. Biotechnology Bulletin, 2004, 238(1/4): 1-37.
[17]程起群, 马春艳, 庄平, 等. 基于线粒体cyt b基因标记探讨凤鲚3群体遗传结构和进化特征[J].水产学报,2008,32(1):1-7.
[18]张东亚, 汪登强, 刘绍平, 等. 怒江濒危鱼类缺须盆唇鱼基于线粒体Cytb序列的群体遗传结构分析[J]. 中国水产科学, 2009, 16(4): 477-486.
[19]Sambrook J, Russell D W. 分子克隆实验指南[M]. 3版. 黄培堂, 译. 北京: 科学出版社, 2002.
[20]Miya M, Takeshima H, Endo H, et al. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences[J]. Molecular Phylogenetics & Evolution, 2003, 26(1): 121-138.
[21]Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology & Evolution, 2011, 28(10): 2731-2739.
[22]Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
[23]Excoffer L, Laval G, Schneider S. Arlequin (version 30): an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
[24]Bandelt H J, Forster P, Rhl A. Medianjoining networks for inferring intraspecific phylogenies[J]. Molecular Biology & Evolution, 1999, 16(1): 37.
[25]桂建芳. 脊椎动物线粒体DNA的进化遗传学[J]. 动物学杂志, 1990(25): 50-55.
[26]Bryan M B, Zalinski D, Filcek K B, et al. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes[J]. Molecular Ecology, 2005, 14(12): 3757-3773.
[27]Lindholm A K, Breden F, Alexander H J, et al. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia[J]. Molecular Ecology, 2005, 14(12): 3671-82.
[28]Ahern R G, Hawthorne D J, Raupp M J. Founder effects and phenotypic variation in Adelges cooleyi, an insect pest introduced to the eastern United States[J]. Biol Invasions, 2009, 11: 959-971.
[29]段云. 中国麦红吸浆虫不同地理种群的遗传结构及遗传多样性研究[D]. 北京: 中国农业科学院, 2013.
[30]杨媛雯. 峨眉髭蟾 (Vibrissaphoraboringii) 的遗传多样性及其地理分化[D]. 贵阳: 贵州师范大学, 2014.
[31]Ayres R M, Pettigrove V J, Hoffmann A A. Low diversity and high levels of population genetic structuring in introduced eastern mosquitofish (Gambusia holbrooki) in the greater Melbourne area[J]. Australia Biol Invasions, 2010, 12: 3727-3744.
[32]高宝嘉, 杜鹃, 高素红, 等. 美国白蛾种群的遗传多样性与遗传分化[J]. 林业科学, 2010, 46(8): 120-124.
[33]施雯, 耿宇鹏, 欧晓昆. 遗传多样性与外来物种的成功入侵:现状和展望[J]. 生物多样性, 2010, 18(6): 590-597.
[34]王亚民, 曹文宣. 中国水生外来入侵物种对策研究[J]. 农业环境科学学报, 2006, 25(1): 7- 13.
[35]Pyke G H . Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species[J]. Annual Review of Ecology Evolution & Systematics , 2008, 39: 171-191.

备注/Memo

备注/Memo:
收稿日期:2017-04-06; 修回日期:2016-05-25
基金项目:国家自然科学基金(31460551)资助。
第1作者:秦凯波(1990—)男,硕士。研究方向:自然地理学。Email: 814609087@qq.com
通信作者:郑毅(1964—),男,博士,教授,博士生导师。研究方向:土壤与植物营养。Email: zhengyi-64@163.com
更新日期/Last Update: